2 April 2022
Compiling Giac via MSYS2/CLANG32
It is a great honor that the GeoGebra Team allowed me to show some technical updates
in the frame of the
GeoGebra
Community Gathering March 2022. It was organized online
on the 31st of March. I managed to describe three topics, but for the fourth one,
“Compiling Giac via MSYS2/CLANG32” I could not reserve enough time. This blog entry
explains some ideas on this topic.
Giac is the embedded computer algebra system in GeoGebra. It is
developed by the French mathematician
Bernard Parisse,
a researcher of
Institut Fourier
in Grenoble, France. During the last years a couple of young programmers at GeoGebra joined
his work a bit, at least in fighting against various platforms and compilers. To name just a few,
Zbyněk Konečný,
Balázs Bencze and
Ágoston Sütő worked quite a lot on this field.
Since Giac is written in C++, it is possible to use it in an embedded way
on various platforms including Java (on Windows, Mac and Linux), Android or iOS.
The embedding is, however, far from being straightforward: it requires experts
who are ready to address technical challenges. One of those challenges is to
compile Giac for Java on Windows: the current official way how we do it is
to maintain an Ubuntu Linux 20.04 system that compiles Giac via
a cross-compiler called
g++-mingw-w64-i686
.
Here
g++
stands for the GNU C++ compiler (or, more precisely,
the C++ frontend of the
GNU Compiler Collection, also known as GCC),
mingw-64
refers to
a Windows based runtime environment
for GCC, and
i686
is a “flavor” that is used to produce executable code for
32-bit architectures.
One of our power users recently faced some issues when using some exotic computer algebra code
– a crash occurred, but only on Windows. Unfortunately, we were unable to reproduce
the bug on other platforms. Even worse, for the g++-mingw-w64-i686
platform
we do not even have satisfactory ways to debug the code.
Trying a newer toolchain
A toolchain is a set of programs that help compiling your code for a given platform.
In this point of view, g++-mingw-w64-i686
is a toolchain that creates executable code
for the 32-bit Windows platform. There are other toolchains available that offer similar functionality,
but based on different software or different settings.
After a remarkable amount of work (that is, months, with a remarkable amount of breaks) I managed
to find a way to compile Giac for Java/Win32. During the last months I learned that there
is a very diligent and motivated team who work very hard on providing the best toolchain
creating Windows executables based on a Linux-like command line framework.
These guys are the
MSYS2 team.
MSYS2 is a complicated system. My biggest confusion was that it provides several
environments like
MSYS, MINGW64, UCRT64, CLANG64, MINGW32, CLANG32 and CLANGARM64. If you are new to MSYS2,
the first steps are rather difficult when learning which environment fits you the most.
For me, different C++ (or C) projects needed different environments because each environment
supports just a partial set of the well-known libraries under Linux. For example,
porting
Tarski to Windows I first selected the MSYS environment
and achieved acceptable results,
but later I chose CLANG64 that seemed to be able to create more stable Java DLLs.
On the other hand, for
GNU Aris the MINGW64
environment was the winner.
My friend and colleague
Noah
Dana-Picard – a power user of
GeoGebra Discovery –
reported that some of his students in Jerusalem, Israel, have difficulties in installing
the Java/Win64 version of GeoGebra Discovery. I always thought that nowadays nobody uses
32-bit Windows or 32-bit Java anymore. But it turned out that I was wrong.
It was just recently, end of 2021.
So I quickly had a look at the MSYS2 project – I was optimistic to find another environment I could use.
Unfortunately, the CLANG32 environment was in a very early stage that time. But coming back
later, by the end of December, CLANG32 was already up-to-date enough to help
me creating a fully functional variant of GeoGebra Discovery that runs on Java/Win32.
I had, as always, many difficulties on finalizing the DLL, but I got very prompt and
useful help from the MSYS2 team on their Discord communication platform.
I am especially grateful to Jeremy Drake, Biswapriyo Nath and Christoph Reiter who
explained me several important details how MSYS2 works under the hood. Many details
were shown me on Christmas Eve – I just wanted to ask a question and wait for the answer
after the holidays, but they apparently solved my question within an hour. That was
an exceptionally kind way how they handled a user request.
Using my experiences from other projects
Porting Giac to the MSYS2/CLANG32 environment was a simpler story because I had the
former experiences with the other projects.
Mike
(our project leader and chief technology officer at GeoGebra) asked me to focus on
Java/Win32 since our users in several schools may have similar problems of old computers
or old software. Finally, a CLANG32 build is available now, and, what is more, it is automatically
compiled on each source code change (more precisely, on each
git push
)
in
my own GitHub repository of Giac. My own repo
is a fork of
GeoGebra's official Giac repository,
but mine contains the required extra code – it is, of course,
synchronized quite regularly to be up-to-date with the mainstream version.
GitHub's automated build feature is an extremely useful way to keep your source code
tested. To explain it in a nutshell: you only need to maintain
a configuration file that explains
which platforms are to be compiled and exactly how. To have a quick overview,
I copy the MSYS2/CLANG64 part here:
name: build test
on: [push]
jobs:
windows_msys2_clang64-native-cmake:
runs-on: windows-latest
defaults:
run:
shell: msys2 {0}
steps:
- uses: actions/checkout@v1
- name: prerequisites
uses: msys2/setup-msys2@v2
with:
msystem: CLANG64
update: true
install: >-
base-devel
mingw-w64-clang-x86_64-cc
mingw-w64-clang-x86_64-cmake
mingw-w64-clang-x86_64-make
- name: build
run: mkdir cbuild && cd cbuild && CC=clang CXX=clang++ cmake -G "MinGW Makefiles" .. && mingw32-make
I copied the CLANG64 variant in this blog because the CLANG32 environment is not yet production ready on GitHub
at the moment. So, one needs to do some file system hacks to set up MSYS2/CLANG32 first, and
then update the packages, and finally install the necessary packages
mingw-w64-clang-i686-cc
,
mingw-w64-clang-i686-cmake
and
mingw-w64-clang-i686-make
for Win32. The Java related files are already
available as pre-compiled packages in the Giac repository (these include native versions
of
GMP and
MPFR,
this is a standard way how we do this at GeoGebra).
The final player in this story is
CMake. I would not say
that I chose it because of its simplicity or platform transparency – it was just an attempt
and it worked after an acceptable amount of headache. CMake has a convenient learning curve:
you can start simple things quite easily, but for complex projects you need to master it.
I am somewhere between the beginner and intermediate level now.
To make this long story short: Our user's problem with the crash has been solved with the new
toolchain. However, we still need some work to integrate the new toolchain in the production process.
Hopefully, this can be addressed soon.
Giac is available on many platforms. My GitHub fork currently supports 11 different platforms –
each runs a different piece of code of the GitHub action. You may be interested how GitHub informs me
after a
successful run
of compilation for all the 11 platforms. It was fun to put this testing system together, however,
the maintenance of so many platforms seems to be quite difficult for the long term.
So – unification and simplification remain very important issues!
Continue reading…
See also a filtered list of the entries on topics
GeoGebra,
technical developments or
internal references in the Bible.
|
Zoltán Kovács
Linz School of Education
Johannes Kepler University
Altenberger Strasse 69
A-4040 Linz
|