1 October 2021
Web version of Tarski
In the previous blog
entry three months ago three goals were
set. My greatest pleasure is to announce that two of those goals are completed!
In a nutshell: GeoGebra's future versions may require an internal method to symbolically solve a system of inequalities,
and eventually also elimination of quantifiers. Meanwhile hard work was dedicated to this project
during the summer, however, most of the work was just a kind of dissemination what we plan to do.
This figure was created for the
ADG 2021 conference,
more precisely, for our joint
talk with Chris Brown and Róbert Vajda.
Now we are happy to announce that this goal has been partially achieved:
Tarski is ready to work either as a dynamic library
(a DLL) so it can be immediately accessed from a Java application. Also, a web version is ready to go,
and this goal was completed with the
Emscripten toolchain.
Here we provide you with a full featured demo which presents the fulfillment of the second goal.
Tarski is running on your machine in your web browser.
You do not have to download anything on your machine, unzip, recompile or install any software.
Everything is ready to go.
Tarski's syntax may be a bit strange for the first look. It uses a
LISP-like input format with nested parentheses.
Commands can be given as first words after a parenthesis opens. In our example the command
qepcad-api-call
is used which means
quantifier elimination via an internal API call,
namely
QEPCAD B. (Luckily, you do not have
to know anything about this other tool. It has an even stranger syntax, so better to keep some distance.)
After this command a quantified formula is given, here \(\exists x:ax^2+bx+c=0\).
If things work as expected, after clicking in the pink area and pressing ENTER will give you some output that
can be interpreted as \[4 a c - b^2 \le 0 \wedge (b \neq 0 \vee c = 0 \vee 4 a c - b^2 < 0).\] So what is the meaning
of all of this?
We ask the question: For which \(x\) values does the quadratic equation \(ax^2+bx+c=0\) have a solution?
Answer: If \(a\neq0\), there is a solution if and only if the discriminant satisfies \(b^2-4ac\ge0\). Otherwise,
the equation is not quadratic, and in that case there are two subcases: If \(b\ne0\), a solution always exists;
otherwise \(c\) must also be 0. It is quite clear that Tarski gave an equivalent answer here.
Due to our best knowledge there is no other web based system that can compute such questions to date!
Some technical background
We extended Tarski to be able to compile with Emscripten. To achieve this the
source code had to be
edited at some places where Emscripten did not support certain C++ techniques. We also
compiled openssl
for Emscripten and copied in its system folder. After then, the command line
TOOLCHAIN=emmake ./build.sh
successfully compiles the
WebAssembly
version of Tarski, and three files are provided: an .html wrapper,
a .js interface and the .wasm code.
Here you can
download the most
recent binaries for various platforms (including WebAssembly, of course).
More examples
Maybe you want to try out some examples that are known to work in the web version:
(qepcad-api-call [ ex x [ x>0 ] ] )
(Is there a positive number?)
(qepcad-api-call [ ex x [ x^2<0 ] ] )
(Is there a number such that its square is negative?)
(t-neg [all m[ex x[x^2>m]]])
(What is the negation of the statement that the function \(x^2\)
has no upper bound?)
Continue reading…
See also a filtered list of the entries on topics
GeoGebra,
technical developments or
internal references in the Bible.
|
Zoltán Kovács
Linz School of Education
Johannes Kepler University
Altenberger Strasse 69
A-4040 Linz
|